一、江西籍现代数学家的若干特点(论文文献综述)
卓小仃[1](2021)在《HPM视角下小学分数教学史料探微》文中指出HPM理论是关于数学史与数学教育的理论,已经形成相对成熟的框架和研究体系。近年来,HPM研究成果日趋增多,其理论运用于数学教育实践的成效也得到了验证。分数内容是小学数学教学的重点和小学生学习数学的难点,虽然已有将HPM运用于小学数学教学的相关研究,但尚未发现将HPM与小学分数教学结合的研究文献。本文在分析课程标准关于分数教学的要求和梳理小学数学教材中已有分数史料的基础上,进一步挖掘和整理与小学分数教学相关的史料,并提出了将相关史料运用于小学分数教学的原则和建议。本文主要采用文献分析法、文本分析法、案例设计法等进行探讨和研究。通过查找数学史融入数学教学、数学史的教学价值、分数教学的相关文献资料,为研究奠定基础。采用“文本分析法”对教材中相关的分数教学内容及其所涉及的分数史料进行详细分析,以相关典籍着作作为史料来源,并对史料进行整理和分析,选择小学分数相关课题进行案例设计,探索分数史料与分数教学整合的原则。通过研究发现,HPM视角下的分数教学顺承了《数学课程标准》中数学文化要求及其所提倡的数学史料可以渗透于整套教材中的建议,同时与数学教学的三维目标相契合。小学数学教材中已经包含了分数的相关史料,但教材中史料数量整体偏少。而《九章算术》《古算诗题探源》《算数书》《孙子算经》《算盘书》《数学简史》《简明数学史》《这才是好读的数学史》《名人·趣题·妙解》等典籍和着作中蕴含了丰富的分数史料,可以与小学分数教学内容相匹配。通过对以上典籍中分数相关史料进行梳理,共整理出相关的分数史料42条。基于HPM教学理论,提出了适合小学分数融合史料的五个原则,找到史料与分数课题的联结点,并结合分数教学知识点以及史料的表现形式对所收集的分数史料进行分类与整合,将其分为13个类别。对13个类别的数学史料融入分数教学做了具体的分析与阐述。以“约分”教学设计为案例探索,旨在更好地将史料与分数教学融合对应,并作为分数史料与分数教学的整合示范。结合HPM视角下的分数教学史料的探究经历,对“数学史料的挖掘与收集、数学史料的筛选、数学史料的应用”提出如下建议:首先,对于数学史料的寻找上,可从相关的历史古籍、考古文献、文化史资料等方面进行挖掘;史料可多角度、多类型、多范围地进行收集。其次,对于史料的选择上,选择蕴含相关数学思想方法的,且具有正面教育意义的史料;同时应避免难度大、知识偏、观念旧的非科学历史内容。最后,在数学史料的运用上,应根据课题需要、在三维目标的指导下、结合HPM原则,将数学史料作为导入、新授、巩固、练习或者课外延伸等环节加以应用;另外,史料与课题内容应具有密切关联性,史料内容与教授课题应相互匹配。
苏日娜[2](2020)在《数理逻辑在中国的发展史研究(1920-1966)》文中研究说明数理逻辑,又称符号逻辑、理论逻辑或逻辑斯蒂,数学的一个分支,用数学方法研究的逻辑或形式逻辑。数理逻辑诞生于17世纪末,迄今为止,已有三百余年的历史。数理逻辑最初是作为“运用数学方法的逻辑”而兴起的。随后,数学的发展提出并要求解决数学的逻辑和哲学基础问题,于是数理逻辑又进一步发展成主要是“关于数学的逻辑”,并且与数学基础理论相结合,成了一门具有强大生命力和广泛应用的数学科学。1920年,随着英国着名哲学家、数学家、社会活动家,数理逻辑的集大成者罗素(1872-1970)来华,数理逻辑正式传入中国。本文以1920-1966年间数理逻辑在中国的发展历史为研究对象,在系统地挖掘、收集和整理原始文献和研究文献的基础上,进行了较为细致和深入的研究,力图从整体上厘清其发展的基本脉络,呈现主要科学家的贡献和中外数理逻辑交流等情况,较为客观地反映其发展水平和特点。本文主要包括以下4部分内容:1.分前史时期、第一阶段、第二阶段、第三阶段梳理数理逻辑的诞生及其各分支的发展历史。2.考察了20世纪上半叶中国学者对数理逻辑的引介工作。分析了罗素来华之前,中国学者关于数理逻辑的探讨以及罗素《数理逻辑》讲演的历史背景、内容与影响。围绕中国第一部数理逻辑译着《罗素算理哲学》及其引起的学术争论,探讨了数理逻辑被最初引进时中国学者的态度、学术水平与传播范围等问题。搜集了早期中国学者的数理逻辑论文,介绍了他们对集合论、数学基础、数理逻辑基础理论3个方面的引介工作。3.回顾和总结了数理逻辑在中国初步奠基时期(1920-1949)的发展历史及其特点。以汪奠基的《逻辑与数学逻辑论》、《现代逻辑》和金岳霖的《逻辑》3部具有代表性的着作为切入点,探究了这一时期中国学者数理逻辑研究的方向、水平与贡献。特别探讨了各层次数理逻辑教育的开展情况以及20世纪三四十年代,中国第一批数理逻辑留学人员的学习与研究。4.回顾和总结了数理逻辑在新中国的建立与发展时期(1949-1966)的发展历史与特点。重点讨论了这一时期数理逻辑界为消除科学界和大众对数理逻辑的歪曲和误解所做的宣传与普及工作。分析了国内外学术交流的开展与“12年远景规划”对数理逻辑的助推作用,总结了中国学者在数理逻辑理论与应用领域取得的主要成绩。以1952年“院系大调整”为背景,讨论了数理逻辑专门人才的培养情况。论文主要结论如下:1.民国时期,以傅种孙、张申府、金岳霖、汪奠基为代表的先行者们为数理逻辑在中国的引介和传播做出了卓越贡献。他们的引介工作是谨慎的、负责的,也是先进的。他们的工作使数理逻辑在中国的发展具有了较高的起点和良好的基础,迈出了历史性的、坚实的一步。2.数理逻辑在中国的初步奠基时期(1920-1949),国内学习和研究数理逻辑的人屈指可数,并没有广泛和稳固的发展基础。一些科学家的工作和具有前瞻性的成果没有产生应有的影响。数理逻辑只是中学、大学课堂里讲授的内容,并没有成为理论研究的主要对象。3.数理逻辑在新中国的建立与发展时期(1949-1966),为使数理逻辑具备持续发展的群众基础,中国数理逻辑学家开展了行之有效的宣传与普及工作。20世纪五十年代,数理逻辑研究机构相继成立,标志着中国数理逻辑发展已经从教学研究相结合的阶段进入专门研究阶段。这一时期,中国数理逻辑在逻辑演算、递归论及数理逻辑的应用等领域有比较集中的研究,尤其在逻辑演算、递归论两个领域取得了一些具有国际领先水平的成果。4.大学数理逻辑教育的开展为学科的发展带来了转折。1927年,金岳霖在清华大学哲学系开设数理逻辑课程。20世纪三四十年代,在国内接受数理逻辑教育的第一批留学人员出国深造,师从世界知名大师学习。他们回国后,投身教育与科学研究第一线,开创了我国数理逻辑崭新的局面。5.国家政策是助推数理逻辑发展的重要动力。1956年,《1956—1967年科学技术发展远景规划纲要》颁布后,数学界及全国各地高等学校相应地开展了远景规划的实施工作。数理逻辑界开始了较大规模的有计划的科学研究,构建了中国数理逻辑发展的新格局。
杏永辉[3](2020)在《张奠宙数学教学思想研究》文中提出张奠宙(1933—2018),一生贯通数学、数学史、数学教育,研究领域多维,被誉为“三栖学者”。在中国教育大发展、大变革的年代中,他一直致力于中国数学教育的总结,以构建中国特色数学教育体系为奋斗目标。他角色多变,集数学家、学者和教育家于一身,在长期的治学过程中形成了以数学教学观、数学课程观和数学教材观为体系的数学教学思想。研究张奠宙的数学教学思想,不仅可以加深我们对中国数学教学发展脉络和演进轨迹的认识,而且可以探究张奠宙数学教学思想对数学核心素养落实和数学课程教学改革的价值。本研究在梳理张奠宙的求学和工作经历的基础上,对张奠宙数学教学思想进行分析,并阐述其对当下数学课程与教学的启示。首先,论文介绍张奠宙的求学和工作经历,展示其数学教学思想孕育的现实背景,将这一人物立体地呈现出来,为揭示其数学教学思想奠定基础。其次,系统阐述张奠宙数学教学思想的具体内容,主要包括数学教学观、数学课程观和数学教材观三个方面。在数学教学观方面,张奠宙将教学目的着眼于全面提高学生数学素养,教学方法论注重教学理论与教学实践相结合,学习方式提倡接受学习与自主探究学习适度对接;在数学课程观方面,分别从课程内容、课程实施、课程评价三个层面展开论述;在数学教材观方面,张奠宙主张渗透科学精神和人文精神,从他的教材编写理念、教材形式设计和教材内容处理进行具体分析。最后,评析他的教学思想是如何体现合理对接和均衡发展的理念、如何进行数学学科的智育和德育,如何贯穿“打好基础”与“创新发展”的要求,如何兼顾本土特色与国际经验。尽管他的教学思想存在着一定的局限性,但对我国数学核心素养的落实和数学课程教学改革仍具有积极的借鉴意义。具体来说有以下三点,以“教育自信”建设中国特色数学教学理论、以“英才数学”弥补数学课程缺失、以“核心素养”展望数学教材编写。
宋晋凯[4](2020)在《民国前期数学现代转型的文化观照(1912-1935年)》文中认为民国时期的学术是中国学术史上的一座高峰。数学学科的发展历程也是如此,中国现代数学在民国后期(1936-1949年)出现了一次研究的高潮,许多数学家逐渐进入了世界数学舞台的中央,一些研究成果达到了世界先进水平。我们审视民国后期的数学发展成就,不可不追溯民国前期(1912-1935年)的数学现代转型。民国前期,文化变革剧烈,社会思潮汹涌,在科学文化空前繁荣的背景下,中国传统数学伴随着“四部之学”到“七科之学”的学术转向,逐步完成了体制化进程,现代转型初步完成。民国前期的数学现代转型,使中国传统数学在学术、学科、学人、学会等建制建设方面发生了根本性的转变。至为重要的是,在民国学术现代转型的浪潮中,学界对数学本质、数学价值、数学真理等数学思想进行了深刻的理论反思和哲学审视,构筑起具有独特时代文化特质的数学思想文化形态。民国前期的数学思想文化颠覆了中国传统数学的观念认知,与数学现代转型相互耦合、互为促进,也为国民政府时期数学研究的高潮奠定了坚实的文化根基。本文遵循学术现代转型的史学研究路径,以“契机→内容→主体→途径”为主线牵引通篇,分为绪论、正文(共七章,首章为契机,中间四章为内容,后二章分别为主体和途径)、结束语三个部分。绪论部分围绕研究目的和意义、国内外研究现状、研究思路、研究方法、创新与不足以及概念释名等内容进行阐释,重点对选题研究的合理性、可行性给予论证。第一章是关于民国前期数学现代转型的文化背景及基本概况的相关内容。民国数学现代转型的研究,必须将其置放于社会文化发展的时代背景之下,也必须通晓国外数学潮流的发展情况。本章简要介绍了民国科学文化、世界数学思想潮流的相关情况,重点对民国数学现代转型的重要标志和体制化完成的重要节点给予着墨论述,为正文后续部分的展开进行铺垫。第二章是关于民国前期数学本质探讨的内容。事物的本质最可从其定义中体现,从定义出发也可探寻事物本质的“元问题”。本章围绕数学界说在中国传统数学中的历史演变、民国前期数学界说的形态等内容,重点从数学基础研究、实在论的视角进行数学本质属性的挖掘。民国前期的数学本质体现出自然属性、哲学属性以及实在论等方面的特征。第三章是关于民国前期数学认识论的内容。认识论是对事物本质探寻的纽带。围绕数学知识能否被人类所认知这一问题,民国学界进行了激烈的论争,其中,尤以罗素的数学不可知论影响最为深远。受罗素来华带来的文化效应影响,数学不可知论成为这场论争的焦点。本章重点讨论数学不可知论的历史演变及传播概况,系统梳理了数学不可知论自身体现出的“空洞无物”“不辨真妄”的典型特征,并对民国学者利用唯物辩证法对其发起诘难的情况进行了回溯。第四章是关于民国前期数学价值观嬗变的内容。价值观是数学思想文化的重要组成。中国传统数学为“六艺之末”,体现出鲜明的实用主义导向。进入民国之后,现代数学的价值被学界重新认知,此时的数学被理解为是“科学之基”“科学之母”,数学的价值观念发生了根本转变。围绕数学的价值,民国学界对数学之于社会、文化和人生的作用,以及数学与统计学、经济学、艺术学等现代学科的关系进行了广泛的探讨。第五章是关于民国前期数学真理性研究的内容。真理性研究是数学哲学关注的重要主题。民国学界对数学真理所体现出的保守性、递进性、自足性等特点进行了总结。实证主义思潮传入使数学真理的特性受到了挑战,数学真理的相对性以及数学公理主义倾向成为学界论争的重点。康德哲学、实证主义、公理主义等哲学理论与非欧几何学、极限理论等数学学说相互交织、相互援引,成为民国学界真理性探讨的特色。第六章是关于民国前期数学思想文化主体寻源的内容。留学生是民国前期数学思想文化建构的主体。民国以前,实业是留学生学科选择的主要方向,数学留学生的数量极少。及至民国,西学被大规模建制化的持续引入,学界对数学的重要性有了充分认识,数学留学生的数量逐渐增多。学成回国的留学生不仅是民国数学现代转型的骨干,更是数学思想文化变革的中坚,引领了民国前期数学思想文化的发展。本章还以数学留学生的典型代表——胡明复为对象进行具体研究,点面结合勾勒数学留学生在民国前期数学思想文化构建中的重要作用。第七章是关于民国前期数学思想文化传播途径的内容。期刊是文化传播的重要载体。中国现代意义期刊的创办受益于来华传教士群体。在民国以前的期刊中刊载过一些数学文化方面的文章,但数量较少,并未产生特别的影响。数学思想文化在民国前期的传播途径体现出综合性期刊→大学期刊→专业期刊的典型特点。《科学》《少年中国》《学生杂志》等综合类期刊成为数学思想文化的重要传播平台。外国名哲来华访学,促进了民国数学思想文化的发展,人物学说研究类专门期刊开始出现。《罗素月刊》是此类期刊的嚆矢,是一种非常特殊的文化现象。以《罗素月刊》为研究素材,可以管窥民国前期数学思想文化经由期刊传播之原貌。结束语是对本文的总体回溯。主要包括民国前期数学思想文化特点的归纳总结、本文研究的不足与仍需努力的方面、本文研究的展望及下一步需要关注的研究方向等内容。
冯俊琪[5](2020)在《中国基础教育阶段女性数学教育发展研究(1978-2020年)》文中研究指明弹指一挥间,改革开放走过了40多年的历程。女性数学教育,作为一种文化现象,随着社会的变化、数学教育理念的变革逐步发展。经过40多年的积累,回望我国女性数学教育已发生翻天覆地的变化。女性接受数学教育是女性学习掌握数学科学知识的重要途径,也是女性发展智力、提升智力水平的重要工具,女性数学教育的程度标志着现代女性智能化的水平。因此,保障女性受数学教育的权利,不仅关系到女性素质的高低,而是更关系到经济的发展、社会进步的推动。女性数学教育是数学教育的重要组成部分,但有着区别于数学教育的独特问题、独特视野以及独特社会价值,所以人们应当更加关注与重视。女性数学教育研究是数学教育研究中不可或缺的部分,但有着区别于数学教育研究的独特问题、独特视野以及独特社会价值,所以人们应当更加关注与重视。目前,我国女性数学教育研究的主要任务是什么?这是一个值得每一位研究女性数学教育的学者思考的问题。笔者认为,当前的主要任务包括:1.记录我国女性数学教育发展的历程;2.探讨我国女性数学教育的历史发展与政治、经济、文化和教育理念之间的关系;3.对女性数学教育相关的研究成果进行研究与反思,以期为我国女性数学教育的发展和繁荣提供成果借鉴和历史思考。基于此,使得本文采用历史研究法、文献研究法等方法进行研究论述。全文主要分为绪论、理论基础、正文和结语四个部分。正文部分包括五章内容:第一章研究了女性数学教育从缺失到确立的历史进程,分为三个阶段,即零星的家庭数学教育(封建社会)、女性数学教育的萌芽(1840—1949年)和女性数学教育的发展(1849—1978年)。第二、三、四章分别论述了我国改革开放以来全面恢复时期(1979—1989年)、繁荣发展时期(1990—1999年)、巩固提高时期(2000年—至今)的女性数学教育发展总况。每一章都将从女性教育政策及措施、女性受数学教育情况、女性数学教育的成就以及女性数学教育研究情况四部分展现女性数学教育在每一期的发展历程。第五章是针对改革开放以来女性数学教育以及女性数学教育研究发展中存在的问题,总结了经验、梳理了对女性数学教育发展的影响因素、女性数学教育研究的结论,提供了一些对未来女性数学教育发展以及女性数学教育研究切实可行的措施,以期为今后女性数学教育的发展提供借鉴作用,起到自己的绵薄之力。总之,论文结合女性数学教育历史与现状,从数学史和数学教育的角度对女性数学教学和女性数学学习培养过程进行分析,并且分析了在此背景下兴起的女性数学教育研究的情况及问题,为我国数学教育中的性别公平建设,为女性数学教育进一步的理论研究和实践探索提供有益参考。
于金霞[6](2020)在《民国时期数学科普着作之研究》文中研究表明科学普及与科技创新同等重要,数学科普可以向广大群众普及数学知识与技能、传播数学方法与思想、弘扬数学精神与文化。中国近代数学科普发展壮大于民国时期,自五四运动后陆续有优秀的数学科普着作问世,一时间些颇有洛阳纸贵的味道。现代数学科普作品浩如烟海,一些民国时期出版的优秀作品渐渐湮没无闻,缺乏统计整理。本文通过文献研究法将搜集到的91册民国时期翻译引入的与国人自编的数学科普着作从时间、内容、适合学段、出版社、再版次数、作者与译者生平简介等多个维度上进行统计,完善史料梳理,既保护并传承了史料也为现代读者提供阅读索引。并从中发现:民国37年中20世纪30年代出版的数量最多;这些着作主要面向具有中学水平的读者,并注重其教学辅助作用;再版数量可观,三分之一翻译引入的着作有过再版、四分之一的国人自编着作有过再版;多数作者都有过中小学教学经历,且译者来自各行各业。为更加精细地探究民国数学科普着作的教育意义,采用个案研究法与历史研究法对该时期在中国流传的英国的Mathematical Recreation and Essays、美国的Riddles in Mathematics和日本数学家林鹤一的着作进行个案分析,详细论述其特点及影响;对国人自编的数学科普着作《古算趣味》与《数学游戏大观》进行个案分析,详细论述其特点、历史地位、教育意义及对当今的教育启示。发现民国时期的数学科普着作不仅为“科学救国”贡献了力量,也注重对读者学习兴趣的提升、数学思维的改善和数学文化的熏陶,还提倡在教育教学中恰当应用数学科普知识,且民国数学科普作家们秉承皓首穷经、兢兢业业并兼顾弘扬国粹与吸收西方新知的中庸之道,这都是值得现代教育工作者继承发扬的精神。
张彩云[7](2019)在《中国中学几何作图教科书发展史(1902-1949)》文中研究说明正如柏拉图所言,数学是从现实世界到理念世界的桥梁,图是用思维把握客观世界的空间形式和数量关系的工具。造型艺术中的设计图、各种工程中的设计图和数学中的图或图像,无论是简单还是复杂,其出发点都是作图,这就决定了几何作图的极端重要性。作图是一种掌握技能、养成习惯、锻炼思维和培养能力的过程。自1607年欧几里得的《几何原本》被译介到中国以来,逐渐地改变了中国的数学教育,中国人对几何作图有了崭新的认识。尤其在清末民国时期,几何作图已成为中小学数学教育乃至美术教育的核心内容之一。本研究以1902-1949年中国中学几何作图教科书及几何教科书中的作图为研究对象,以数学教育史为背景和视角,以文献研究法、历史研究法、分析法、比较研究法等为主要研究方法,将中国中学几何作图教科书在1902-1949年的近半个世纪的发展历程依照国家政体的变革、教育史上的大事件及其自身的发展趋势,分为清末时期(1902-1911)、民国初期(1912-1922)、民国中期(1923-1935)、民国后期(1936-1949),旨在全面、系统、深入地研究中国中学几何作图教科书在1902-1949年间的发展脉络,总结其发展特点,分析影响其发展的因素,力求为当今的几何教育及几何教科书的编写提供借鉴和启示。本研究从如下六个部分展开论述,各部分主要内容如下:一、清末时期(1902-1911)中学几何作图教科书。这一时期,学制初创,新式的学堂亟需与之相匹配的、合用的教科书,中国中学几何作图教科书的种类有引进、翻译、编译、自编四种形式,出版发行的总数超过20种,涉及的出版机构有13家,编撰者有20多位,在今日看来,可谓“百花齐放”。这些教科书风格迥异地表现出两种派系的各自风貌,国人自编本和非自编本透露出不同文化的差异性,即使是来自不同国家的非自编本之间也有明显的不同。所以,该时期从自编本和非自编本中选取了由孙钺自编的《最新中学教科书用器画》,闫永辉编译自日本的《新式中学用器画》,张廷金、余亮翻译自英国的《中学应用几何画教科书》为例,从教科书编撰理念、编排形式、内容结构、名词术语等维度进行了分析。二、民国初期(1912-1922)中学几何作图教科书。这一时期政体发生了变革,教育制度开始影响几何作图教科书的发展,继清末之后进入稳步发展阶段,虽然数量上有所减少,但质量更胜一筹。几何作图教科书在进入课堂以后经历实践的考验和淘汰,基本实现了从清末引进、翻译、编译到自编的嬗变。自编教科书的编撰能从本国国情出发,实事求是,在进入课堂后更深入人心,促进了几何作图的教学,也实现了其创新发展。本章在阐述教育制度及教科书编审制度的基础上,对这一时期出版的,在当时影响较大、再版次数较多、使用周期较长、着名出版社出版的,由黄元吉编撰的《共和国教科书用器画》、王雅南编撰的《新制用器画》、求是学社编撰的《新撰平面几何画法》进行了多个维度的考察。三、民国中期(1923-1935)中学几何作图教科书。1922年的“新学制”颁布后,随之新的教育规章制度出炉,在1923颁布的《中学算学课程纲要》中出现了几何作图教学的具体要求,1929颁布的《中学算学暂行课程标准》亦然,1932年颁布的《中学算学课程标准》中更有“在教授图形相关性质时与图画科联络或宜与用器画取得联系”、“几何作图题,要用器画好,力求整洁”等明确的规定,这在一定程度上对几何作图教科书的编撰、出版产生了影响,促进了中学几何作图教科书的繁荣发展。该部分在阐述课程标准及教科书编审制度的基础上,对这一时期出版的,在当时使用周期较长、影响较大、特色鲜明的,由冯编撰的《应用用器画教科书》、王济仁编撰的《平面立体几何画法》、薛德炯编译的《用器画法平面几何之部》和《用器画法立体几何之部》进行了详细的分析。四、民国后期(1936-1949)中学几何作图教科书。在1936-1949年间又进行了三次数学课程标准的修订,其中对几何作图的要求更详细、更具体。1937年抗战的爆发使得国民政府借机成立了“七联社”及后来的“十一联社”,结束了清末以来40多年教科书市场自由竞争的局面,实现了教科书的国定制,产生了国定本教科书。这对此时期的几何作图教科书产生了非常大的影响,导致仅有商务印书馆一家出版了几何作图教科书,还是针对职业学校编撰的。故此,该部分在概述当时社会背景和数学课程标准中几何作图的相关要求的基础上,对这一时期使用和出版的,由朱铣、徐刚合编的《平面几何画法》、《立体投影画法》、《简易透视画法》和王品端编撰的《平面几何画法》、《投影画法》进行了考察。五、1902-1949年中国中学几何教科书中的作图。该部分又分为两方面进行考察:一是几何教科书中的作图,分初中和高中;二是几何教科书外的作图研究,首先对该时期期刊论文中几何作图研究进行整体梳理,然后以着名数学教育家傅种孙为代表对其几何作图思想进行了个案分析。以期从侧面揭示影响几何作图教科书发展的因素。六、结论。首先,从宏观和微观上归纳了1902-1949年中国中学几何作图教科书发展过程中表现出的诸多特点;其次,分析了影响1902-1949年中国中学几何作图教科书建设和发展的因素;再次,提炼了1902-1949年中国中学几何作图教科书发展史研究的启示与借鉴;最后,提出了继本研究之后,可以进一步研究的问题。本研究主要解决了如下三个问题:第一,以1902-1949年为时间域,探讨了中国中学几何作图教科书的发展历程。第二,根据各学制、课程标准(或课程纲要)及教科书审定制度的颁布和实施,对几何作图教科书的编写背景、编撰理念、编写体例、编排形式、内容结构、名词术语、几何作图典型案例等方面逐一进行考察,总结了中国中学几何作图教科书在这一时期呈现出的宏观和微观特点。第三,考察了1902-1949年中国中学几何教科书中的作图内容,从侧面揭示了影响1902-1949年中国中学几何作图教科书发展的因素。
张先波[8](2019)在《中学数学思想的培养研究 ——基于深度教学的视角》文中研究指明从原始的结绳记事,到对于数与形的重视;从楔形文字、象形文字的表达,到初等数学符号的出现;从面向生活实践的零散数学规律,到系统性的数学学科体系。数学这门古老的学科,在迈过其漫长的发展历史之后,在学校教学的过程中继续生根发芽。作为学校教育中的一门基础性学科,数学不仅致力于传递古今中外的数学知识和定律,更重要的是在与学校生活中其他学科的交融过程中,使学生通过知识的学习,领会数学思想,感悟数学之美。曾有学者指出,数学是关于美的学科,数学是关于艺术的学科,数学是不断反思发展的学科。数学之美,体现在其数字的变幻之美,体现在数学公式的平衡之美,体现在数学发现的探索之美,同时也蕴含在学生学习数学过程中所体会到的获得之美。数学同时还是关于思想的学科,历代数学家根据自己对相关数学领域的研究,不断充实数学思想库,在传承与创新的过程中实现数学学科的不断发展。关于数学是一门艺术还是一门科学性学科的争论至今仍然存在,数学是一门艺术体现在数学通过艺术化的语言、简练的公式表达,使得数学思想得以发展,数学学科也称为学科发展史上的一朵奇葩。数学是一门科学,数学的语言及表达要求精确而凝练地指出相应的意图,要求数学学习者和研究者对于相应数学思想的深刻化理解,并在此基础上做到运用时的精准化。数学同时是一门生活化的学科,原始的数学便发端于人们对于生活问题的解决过程。如古埃及数学文明的发展,便是由于尼罗河三角洲的河道淤积以及洪水泛滥等问题,迫使数学家开始研究淤积的面积,并提供相应的预测。数学的发展往往受到社会经济发展的影响,数学发展的每一个重要阶段必然伴随着社会发展的需要,并且也在顺应社会的需求。这一点在近现代数学发展史中得到了印证,尤其是在现代社会中数学与信息技术的融合,以及基础数学研究的日益专门化和数学教育的大众化等趋势,均是数学与社会经济发展相适应的表现。无论是古典时期阿基米德的几何《原本》,还是现代数学家所取得的重要成就和关键突破,均为数学的发展画上了浓墨重彩的一笔。当前数学的发展,除了需要数学家和相关研究者持续不断的努力,同时需要学校教育培养出对数学感兴趣、能够领悟数学之美的人才。学校教育的产生,在人类历史上无疑是具有划时代意义的事件,它使得人类文明的传承有了相对规范化和制度化的途径。学校教育的产生以及与之相伴随的学科教育的发展,使得人类发展史上的重要成果能够分门别类的进行传递和发展。正如学者所言,我们的数学教育并非是使每个孩子的都成为数学家,而是要在他们心中埋下数学的种子,使他们感悟和理解数学之美。学科教学的过程,不应当只是知识的传递过程,更重要的是学科教学应该成为思想领悟的过程,成为数学知识向数学思想跨越的过程。数学知识的学习是数学思想领悟与获得的基础,是数学深度学习达成的必要前提。基于深度教学的视角探讨中学数学思想的培养过程意味着,从知识观、学习观和教学观等方面进行中学主要数学思想进行培养。从深度教学的视角而言,知识的结构分为符号表征、逻辑结构和意义系统三个层次。数学知识教学过程中,应当是超越知识的符号性教学和表层化教学,进而深入到知识的内部结构之中,使学生在领悟数学学科知识的结构的基础之上,获得数学思想的熏陶。从数学知识到数学思想,不仅是数学教学的飞跃式发展,同时也是教学走向深度的必然要求。当前对于学生关键能力和核心素养培养的重视,最终需要回归到各个学科教学的过程中来,通过学科教学逐步渗透相应的学科思想,培养学生优秀的学科思维,进而促使学科能力和学科素养的提升。尤其是对于中学数学教学而言,中学处于义务教育阶段是学生相应学科思想学习的黄金时期,这一阶段的数学思想学习尤其需要引起教师和学生的重视,课堂教学应当以学科思想,即重要的数学思想为线索,将数学知识串点成线成面。学生的数学学习过程,经由学科思想的浸润,通常能够加深对于数学学科的认识,加深对数学知识的理解以及促进其对于学科结构的把握。因而,数学思想的教学之于数学教学过程而言至关重要,从数学知识到数学思想的跨越是当前课堂教学应当关注的重点。同时,如何在中学教学过程中培养学生的数学思想以及数学思维品质,也是一线教师及研究者应关注的的问题之一。
桂文通,吴治胜[9](2018)在《以史为题,让试卷更有文化味》文中提出认真品读全国2017年各地中考数学试卷,有一个明显的感受就是以数学史为背景的试题大量涌现,数学试卷充满了浓浓的文化味.通过这些试题的设计,它不但弘扬中华优秀传统文化,展示我国伟大数学成就,而且让考生放眼世界,在数学发展的历史长河中体会不同数学文化的数学思想、感受不同的文化中数学的价值.1介绍中国古代数学成就1.1正负数的表示例1(2017年江西)中国人最先使用负数,魏晋时
白黎[10](2018)在《数形结合思想对幼师生数学素养的提升研究》文中研究说明数学素养一词在近年来提到的越来越多,纵观数学素养的发展,国外的研究早于国内,我国从2000年以后才提到数学素养一词。从调查对象来看,国内对中小学学生的数学素养讲究的较多,对幼师生的数学素养研究较少。幼师生是幼儿园教师的前身,也是幼儿数学教育的启蒙者和直接引领者,其数学素养的高低直接决定了幼儿数学教育质量,影响幼儿数学素养的培养。现代社会,随着二胎政策的放宽,新生儿越来越多,幼儿教育发展迅速,这就需要大量的幼儿教育工作者,各级各类幼儿师范学校承担着培养与社会发展需求相符合的人才的重任,但是中职幼儿师范学校的生源质量令人堪忧。提高幼师生的数学素养不仅是提高幼儿园师资的需求,同时也是实现个人全面发展的需要。本文将研究对象集中在在校幼师生这一特殊群体,借鉴国内外关于数学素养的研究理论,通过文献法的分析,调查问卷和访谈的信息收集进行了解和研究,从数学本身的特点以及学生毕业后所从事的工作性质出发,找到幼儿数学教育与幼师生数学教育中的共同点,从“形”作为切入点,以数形结合的数学思想为突破口,找到一种提升幼儿教育专业学生的数学素养途径。研究的问题主要围绕在以下四个方面:1.幼师生学习数学的现状;2.幼师生对数形结合思想方法的了解与掌握情况;3.数形结合思想方法对幼师生学习数学的兴趣提升情况4.通过对调查问卷与访谈结果的分析来探讨这些结果产生的原因,并对利用数形结合思想提升幼师生数学素养做出思考与建议。本文针对幼师生进行研究,从幼师生的学习数学的现状进行分析,结合幼儿园教学的目标、内容、幼儿学习数学的心理特点等,以数形结合思想对幼师生的影响作为切入点,研究数形结合思想对幼师生的影响:1.转换角色,以学为主;2.理解概念,现实与抽象的统一;3.培养思维能力,增强学习信心;4.感受数学之美,提升学习兴趣;5.理论结合实践,提升幼师生的数学素养。并对下一步的研究方向进行了思考和建议。
二、江西籍现代数学家的若干特点(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、江西籍现代数学家的若干特点(论文提纲范文)
(1)HPM视角下小学分数教学史料探微(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
第一节 研究背景 |
一、研究缘起 |
二、研究内容 |
三、概念界定 |
第二节 研究意义与创新之处 |
一、研究意义 |
二、创新之处 |
第三节 文献探讨 |
一、关于分数教学的文献探讨 |
二、关于HPM理论的文献探讨 |
三、文献述评 |
第四节 研究设计 |
一、研究方法 |
二、研究思路 |
三、研究对象 |
第二章 HPM视域下小学分数教学的理论概述 |
第一节 HPM理论概说 |
一、HPM理论的思想渊源 |
二、HPM理论的内容概述 |
第二节 HPM理论应用于小学分数教学的价值意蕴 |
一、契合课程标准之要求 |
二、有助于激发学生学习动机和学习兴趣 |
三、有助于促进学生情感与文化素养的提升 |
第三章 小学数学教材中分数教学内容及其史料探析 |
第一节 小学数学教材中分数教学内容的体现 |
一、小学分数教学内容在教材中的分布 |
二、小学数学教材中分数教学内容的梳理与分析 |
第二节 小学数学教材中分数教学史料的分析 |
一、分数教学史料在教材中的分布 |
二、小学数学教材中分数教学史料内容的梳理与分析 |
第四章 小学分数教学史料的挖掘整合及应用 |
第一节 小学分数教学史料的挖掘 |
一、分数教学史料的收集 |
二、分数教学史料的来源 |
三、分数教学史料的性质 |
四、分数教学史料的分类 |
第二节 小学分数教学史料的整合 |
一、分数史料融入分数教学的原则 |
二、分数史料与分数知识点的对应 |
第三节 小学分数教学史料的应用 |
一、“约分”课例的选择 |
二、“约分”数学史相关材料 |
三、“约分”教学的案例设计 |
四、“约分”案例分析与评价 |
第五章 研究建议与不足 |
第一节 研究建议 |
一、数学史料的收集 |
二、数学史料的选择 |
三、数学史料的应用 |
第二节 研究不足 |
一、史料收集不够全面 |
二、国际视野略显不足 |
参考文献 |
附录 |
致谢 |
攻读研究生学位期间取得的科研成果 |
(2)数理逻辑在中国的发展史研究(1920-1966)(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 选题背景 |
1.2 研究目的与意义 |
1.2.1 研究目的 |
1.2.2 研究意义 |
1.3 文献综述 |
1.3.1 国内研究综述 |
1.3.2 国外研究综述 |
1.4 研究思路与方法 |
1.4.1 研究思路 |
1.4.2 研究方法 |
1.5 创新之处 |
第2章 数理逻辑发展史概述 |
2.1 前史时期(古典形式逻辑时期) |
2.1.1 古典形式逻辑发展史简述(至17 世纪末) |
2.1.2 数理逻辑诞生的科学基础与思想基础 |
2.2 第一阶段 |
2.2.1 数理逻辑指导思想的提出 |
2.2.2 布尔代数与关系逻辑的建立 |
2.3 第二阶段 |
2.3.1 集合论及其悖论 |
2.3.2 数学基础三大学派对数理逻辑的贡献 |
2.3.3 公理集合论的创建 |
2.3.4 “哥德尔不完全性定理”及其意义 |
2.3.5 逻辑演算的建立与发展 |
2.4 第三阶段 |
第3章 20世纪上半叶数理逻辑的引进 |
3.1 罗素《数理逻辑》讲演及其影响 |
3.1.1 《数理逻辑》讲演的历史背景 |
3.1.2 《数理逻辑》讲演的内容及其影响 |
3.2 《罗素算理哲学》及其引起的学术争论 |
3.2.1 《罗素算理哲学》成书背景与内容 |
3.2.2 《罗素算理哲学》引起的学术争论 |
3.3 张申府对数理逻辑在中国早期传播的贡献 |
3.3.1 张申府生平 |
3.3.2 数理逻辑学术活动与贡献 |
3.4 数理逻辑其他方面的引介 |
3.4.1 集合论与数学基础的引介 |
3.4.2 数理逻辑基础理论的引介 |
3.5 小结 |
第4章 数理逻辑在中国的初步奠基(1920-1949) |
4.1 汪奠基《逻辑与数学逻辑论》与《现代逻辑》 |
4.1.1 《逻辑与数学逻辑论》 |
4.1.2 《现代逻辑》 |
4.2 金岳霖的数理逻辑贡献 |
4.2.1 金岳霖生平 |
4.2.2 《逻辑》及其影响 |
4.3 数理逻辑教育的初步开展 |
4.3.1 中等教育中的数理逻辑 |
4.3.2 高等教育中的数理逻辑 |
4.4 留学人员的数理逻辑学习与研究 |
4.4.1 留学人员基本情况 |
4.4.2 留学人员的学习与研究 |
4.5 小结 |
第5章 数理逻辑在新中国的建立与发展(1949-1966) |
5.1 数理逻辑的宣传与普及 |
5.1.1 对数理逻辑唯心主义的批判 |
5.1.2 数理逻辑科学价值的宣传 |
5.2 数理逻辑科学研究的全面开展 |
5.2.1 数理逻辑领域的学术交流 |
5.2.2 “12 年远景规划”中的数理逻辑 |
5.3 数理逻辑各领域重要研究成果 |
5.3.1 理论研究成果 |
5.3.2 应用研究成果 |
5.4 数理逻辑专门人才的培养 |
5.4.1 高等院校专门人才的培养 |
5.4.2 科研机构专门人才的培养 |
5.5 小结 |
第6章 结论 |
6.1 民国时期数理逻辑发展的特点 |
6.1.1 第一代数理逻辑学家的卓越贡献 |
6.1.2 数理逻辑是引介的对象,而非研究的对象 |
6.1.3 数理逻辑留学人员回国后开创新的局面 |
6.2 中华人民共和国成立之后数理逻辑发展的特点 |
6.2.1 数理逻辑从教学研究相结合到专门研究的阶段 |
6.2.2 国家政策助推数理逻辑的发展 |
6.2.3 中国数理逻辑学家的国际影响 |
6.3 研究的不足与展望 |
参考文献 |
致谢 |
攻读博士学位期间的科研成果 |
(3)张奠宙数学教学思想研究(论文提纲范文)
摘要 |
ABSTRACT |
绪论 |
一、论文选题的理由、目的和意义 |
(一)选题理由 |
(二)选题目的 |
(三)选题意义 |
二、文献综述 |
(一)关于张奠宙数学教学的研究 |
(二)关于张奠宙数学课程的研究 |
(三)关于张奠宙数学教材的研究 |
(四)对已有研究的整体述评 |
三、研究思路与方法 |
(一)研究思路 |
(二)研究方法 |
四、研究重难点及创新之处 |
(一)研究重难点 |
(二)研究创新点 |
第一章 张奠宙数学教学思想的形成轨迹 |
一、实践积淀:从数学学习者到数学教学者 |
(一)学业启蒙:开启数学之门 |
(二)师范教育:深入数学领域 |
(三)智慧凝聚:致力数学教学 |
二、专业功底:贯通数学、数学史和数学教育 |
(一)师从数学名家,精研数学理论 |
(二)“为数学而历史”,着述现代数学史 |
(三)适应时代需要,转身数学教育 |
三、学术追求:构建中国特色数学教育学体系 |
(一)总结中国特色数学教育理论框架 |
(二)编写本土化数学教育教材 |
(三)融合西方数学与中华文化 |
(四)参与若干重大数学教育的实践活动 |
第二章 张奠宙的数学教学观 |
一、教学目的:全面提高学生的数学素养 |
(一)数学教学目的提出 |
(二)数学教学目的反思 |
二、教学方法论:教学理论与教学实践相结合 |
(一)教学理论的视角 |
(二)教学实践的视角 |
三、学习方式:接受学习与自主探究学习适度对接 |
(一)必要的接受学习和机械记忆 |
(二)适度的探究学习和发现学习 |
第三章 张奠宙的数学课程观 |
一、课程内容:数学知识的学术形态与教育形态 |
(一)数学知识的内涵 |
(二)数学知识的传授 |
二、课程实施:教师主导与学生主体相统一 |
(一)发挥教师的主导作用 |
(二)突出学生的主体探究 |
三、课程评价:结果评价与过程评价并重 |
(一)改革结果评价的应试导向 |
(二)注重过程评价的发展功能 |
第四章 张奠宙的数学教材观 |
一、教材的编写理念 |
(一)渗透科学精神 |
(二)浸润人文精神 |
二、教材的形式设计 |
(一)教材的总体设计 |
(二)教材的具体设计 |
三、教材的内容处理 |
(一)教材内容的选取 |
(二)教材内容的呈现 |
第五章 张奠宙数学教学思想的启示 |
一、张奠宙数学教学思想的评析 |
(一)基于合理对接和均衡发展的理念 |
(二)融合数学教学的智育和德育 |
(三)贯穿“打好基础”与“创新发展”的要求 |
(四)兼顾教学思想的本土特色与国际经验 |
二、张奠宙数学教学思想的局限 |
(一)受现实条件束缚 |
(二)研究成果比较宏观 |
三、张奠宙数学教学思想的当下价值 |
(一)以“教育自信”建设中国特色数学教学理论 |
(二)以“英才数学”弥补数学课程缺失 |
(三)以“核心素养”展望数学教材编写 |
结语 |
参考文献 |
致谢 |
攻读学位期间发表的学术论文目录 |
附录:张奠宙生平大事年表 |
(4)民国前期数学现代转型的文化观照(1912-1935年)(论文提纲范文)
中文摘要 |
ABSTRACT |
绪论 |
一、研究目的和意义 |
二、国内外研究现状 |
三、研究思路 |
四、重点难点 |
五、研究方法与创新 |
六、概念释名 |
第一章 民国前期数学现代转型的文化背景及演进情况 |
1.1 民国前期科学文化的发展 |
1.2 民国前期现代数学思想的发展 |
1.3 民国数学之现代转型 |
1.3.1 数学教育制度的发展 |
1.3.2 大学数学系的创设 |
1.3.3 数学学会制度的发展 |
1.3.4 国外着名数学家来华交流 |
1.4 本章小结 |
第二章 本体论追问:民国前期数学界说及其哲学意蕴 |
2.1 数学界说的历史演变 |
2.2 民国前期数学界说之形态 |
2.2.1 数学具有自然科学的属性 |
2.2.2 数学具有哲学学科的属性 |
2.2.3 数学基础论争视角下的数学界说 |
2.3 实在论视域下的数学界说 |
2.3.1 数学对象的实在性 |
2.3.2 数学对象的非观念性 |
2.4 本章小结 |
第三章 认识论探讨:民国前期数学不可知论的传播 |
3.1 数学不可知论溯源 |
3.2 不同视角下的数学不可知论 |
3.2.1 民国前期数学不可知论的译介 |
3.2.2 数学不可知论的数学之极善界说 |
3.2.3 空洞无物:观念论视域下的数学不可知论 |
3.2.4 不辨真妄:公理系统视域下的数学不可知论 |
3.2.5 数学基础构建视域下的数学不可知论 |
3.3 “虚”“妄”之辩:唯物辩证法对数学不可知论的批驳 |
3.3.1 数学概念的实在性 |
3.3.2 数学公理的真理性 |
3.4 哥德尔不完备性定理对数学不可知论的影响 |
3.5 本章小结 |
第四章 价值观嬗变:民国前期“六艺之末”到“科学之母”的数学 |
4.1 古代中国社会中的数学 |
4.1.1 实践导向,实用为尚 |
4.1.2 儒学为本,数学为末 |
4.2 民国前期的数学价值 |
4.2.1 数学之于科学 |
4.2.2 数学之于社会 |
4.2.3 数学之于人类精神世界 |
4.3 数学与其他学科的关系 |
4.3.1 数学与统计学 |
4.3.2 数学与经济学 |
4.3.3 数学与艺术学 |
4.4 本章小结 |
第五章 真理性探究:民国前期数学真理的特征及其意义 |
5.1 数学真理的特征 |
5.1.1 数学真理的保守性 |
5.1.2 数学真理的递进性 |
5.1.3 数学真理的自足性 |
5.2 实证主义视域下的数学真理观 |
5.2.1 实证主义真理观的内容 |
5.2.2 实证主义真理观的诘难 |
5.2.3 康德哲学真理观的佐证 |
5.3 民国前期对数学公理的诘难 |
5.3.1 对公理自明性的批驳 |
5.3.2 对公理主义的批驳 |
5.4 本章小结 |
第六章 主体寻源:留学生与民国前期的数学文化 |
6.1 留学生学科专业选择之变迁 |
6.2 数学留学生群体 |
6.2.1 民国以前的数学留学 |
6.2.2 民国前期的数学留学 |
6.2.3 数学博士群体分析 |
6.3 留学生与民国前期的数学文化 |
6.3.1 留学生对科学的传播 |
6.3.2 留学生对数学文化的传播 |
6.4 数学文化传播主体的个例分析 |
6.4.1 胡明复的数学贡献 |
6.4.2 胡明复的数学思想 |
6.5 本章小结 |
第七章 途径审视:民国前期期刊中的数学文化 |
7.1 民国以前的报刊及数学文化 |
7.2 民国前期的期刊与数学文化 |
7.2.1 综合类期刊中的数学文化 |
7.2.2 大学期刊中的数学文化 |
7.2.3 数理期刊中的数学文化 |
7.3 数学文化传播途径的个例分析 |
7.3.1 《罗素月刊》刊创 |
7.3.2 《罗素月刊》概貌 |
7.3.3 《罗素月刊》中的数学文化 |
7.3.4 《罗素月刊》的影响 |
7.4 本章小结 |
结束语 |
参考文献 |
攻读学位期间取得的研究成果 |
致谢 |
个人简况及联系方式 |
(5)中国基础教育阶段女性数学教育发展研究(1978-2020年)(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 问题提出 |
1.2 研究方法与思路 |
1.2.1 研究方法 |
1.2.2 研究思路 |
1.3 研究目的与意义 |
第2章 理论基础与研究背景 |
2.1 理论基础 |
2.1.1 理论介绍 |
2.1.2 概念界定 |
2.2 研究背景 |
2.2.1 国内外研究现状 |
2.2.2 研究时期划分 |
第3章 女性数学教育历史回顾 |
3.1 封建社会——零星的家庭教育 |
3.2 1840 -1949 年——女性数学教育的萌芽 |
3.3 1949 -1978 年——女性数学教育的发展 |
3.3.1 1949 -1956 年的女性数学教育 |
3.3.2 1957 -1978 年女性数学教育 |
3.4 女数学家 |
3.5 本章小结 |
第4章 全面恢复时期(1979—1989 年)的女性数学教育 |
4.1 时期背景 |
4.1.1 女性教育政策及措施 |
4.1.2 数学教育理念 |
4.2 女性受数学教育情况 |
4.2.1 女性受小学数学教育情况 |
4.2.2 女性受中学数学教育情况 |
4.2.3 存在的问题 |
4.3 女性数学教育成就 |
4.3.1 女数学家 |
4.3.2 女性数学教师 |
4.3.3 女性数学教育研究者 |
4.4 女性数学教育研究情况 |
4.4.1 女性数学教育研究文章统计 |
4.4.2 女性数学教育研究内容及特点 |
4.4.3 小结 |
4.5 本章小结 |
第5章 繁荣发展时期(1990—1999 年)的女性数学教育 |
5.1 时期背景 |
5.1.1 女性教育政策与措施 |
5.1.2 数学教育理念 |
5.2 女性受数学教育情况 |
5.2.1 女性受义务教育阶段数学教育情况 |
5.2.2 女性受高中数学教育情况 |
5.2.3 存在的问题 |
5.3 女性数学教育成就 |
5.3.1 女数学家 |
5.3.2 女性数学教师 |
5.3.3 女性数学教育研究者 |
5.4 女性数学教育研究情况 |
5.4.1 女性数学教育研究文章统计 |
5.4.2 女性数学教育研究内容及特点 |
5.4.3 小结 |
5.5 本章小结 |
第6章 巩固提高时期(2000 年—至今)的女性数学教育 |
6.1 时期背景 |
6.1.1 女性教育政策与措施 |
6.1.2 数学教育理念 |
6.2 女性受数学教育情况 |
6.2.1 女性受义务教育阶段数学教育情况 |
6.2.2 女性受高中数学教育情况 |
6.2.3 存在的问题 |
6.3 女性数学教育成就 |
6.3.1 女数学家 |
6.3.2 女性数学教师 |
6.3.3 女性数学教育研究者 |
6.4 女性数学教育研究情况 |
6.4.1 女性数学教育研究文章统计 |
6.4.2 女性数学教育研究内容及特点 |
6.4.3 小结 |
6.5 本章小结 |
第7章 经验教训与挑战 |
7.2 女性数学教育历史发展 |
7.2.1 发展概况 |
7.2.2 存在问题 |
7.2.3 影响因素 |
7.2.4 相关建议 |
7.3 女性数学教育研究 |
7.3.1 结论 |
7.3.2 建议 |
结语 |
参考文献 |
致谢 |
(6)民国时期数学科普着作之研究(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 研究背景 |
1.2 问题提出 |
1.3 研究目的与意义 |
1.3.1 研究目的 |
1.3.2 研究意义 |
1.4 文献综述 |
1.4.1 数学科普读物的系统整理 |
1.4.2 着名数学科普读物的个案分析 |
1.4.3 对数学科普作家的研究 |
1.4.4 小结 |
1.5 研究方法 |
1.6 创新之处 |
1.7 研究思路 |
第2章 民国时期翻译、自编数学科普着作统计分析 |
2.1 翻译引入数学科普着作统计分析 |
2.1.1 分类统计 |
2.1.2 部分译者简介 |
2.1.3 翻译引入数学科普着作的特点及影响 |
2.2 国人自编数学科普着作统计分析 |
2.2.1 分类统计 |
2.2.2 部分作者简介 |
2.2.3 国人自编数学科普着作的特点及影响 |
第3章 在中国流传的外国数学科普着作之特例分析 |
3.1 劳斯·贝尔的Mathematical Recreation and Essays |
3.1.1 作者简介 |
3.1.2 Mathematical Recreation and Essays简介 |
3.1.3 Mathematical Recreation and Essays在中国的传播与影响 |
3.2 普诺·斯罗普的Riddles in Mathematics |
3.2.1 作者简介 |
3.2.2 Riddles in Mathematics简介 |
3.2.3 Riddles in Mathematics在中国的传播与影响 |
3.3 林鹤一的数学科普着作 |
3.3.1 林鹤一简介 |
3.3.2 林鹤一数学科普译着简介 |
3.3.3 林鹤一的数学科普着作在中国的传播与影响 |
第4章 国人自编数学科普着作之特例分析 |
4.1 中国传统古算学题材以许莼舫的《古算趣味》为例 |
4.1.1 作者简介 |
4.1.2 《古算趣味》内容简介 |
4.1.3 《古算趣味》的特点分析 |
4.1.4 《古算趣味》的历史地位 |
4.1.5 《古算趣味》对当今教育的启示 |
4.2 国外数学科普中国化——以陈怀书的《数学游戏大观》为例 |
4.2.1 作者简介 |
4.2.2 《数学游戏大观》内容简介 |
4.2.3 《数学游戏大观》特点分析 |
4.2.4 《数学游戏大观》的历史地位 |
4.2.5 《数学游戏大观》对当今教育的启示 |
第5章 研究结论与展望 |
5.1 研究结论 |
5.2 研究展望 |
5.2.1 研究不足 |
5.2.2 研究展望 |
附录1 翻译引入的数学科普着作 |
附录2 国人自编的数学科普着作 |
参考文献 |
致谢 |
攻读硕士学位期间主要研究成果 |
(7)中国中学几何作图教科书发展史(1902-1949)(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 研究缘由 |
1.2 研究目的与意义 |
1.2.1 研究目的 |
1.2.2 研究意义 |
1.3 研究范围及研究内容 |
1.3.1 研究范围 |
1.3.2 研究内容 |
1.4 文献综述 |
1.4.1 国内研究现状 |
1.4.2 国外研究现状 |
1.5 研究方法 |
1.6 研究过程与思路 |
1.7 创新之处 |
第2章 清末时期(1902-1911)中学几何作图教科书 |
2.1 背景 |
2.2 学制初定及教科书编写 |
2.2.1 清末学制的初定 |
2.2.2 教科书编写概况 |
2.3 个案分析 |
2.3.1 孙钺编《最新中学教科书·用器画》 |
2.3.2 闫永辉编《新式中学用器画》 |
2.3.3 张廷金、余亮译《中学应用几何画教科书》 |
2.3.4 个案教科书内容分类量化比较分析 |
2.3.5 个案教科书作图题比较分析 |
2.3.6 个案教科书名词术语比较分析 |
2.4 小结 |
第3章 民国初期(1912-1922)中学几何作图教科书 |
3.1 背景 |
3.2 教科书审定及编写 |
3.3 个案分析 |
3.3.1 黄元吉编《共和国教科书·用器画》 |
3.3.2 王雅南编《新制用器画》 |
3.3.3 求是学社编《新撰平面几何画法》 |
3.3.4 个案教科书内容设置比较分析 |
3.3.5 个案教科书作图题比较分析 |
3.3.6 个案教科书名词术语比较分析 |
3.4 小结 |
第4章 民国中期(1923-1935)中学几何作图教科书 |
4.1 教育制度 |
4.1.1 背景 |
4.1.2 课程纲要中对作图的要求 |
4.2 教科书审定及编写 |
4.3 个案分析 |
4.3.1 冯编《应用用器画教科书几何画》 |
4.3.2 王济仁编《平面立体几何画法》 |
4.3.3 薛德炯编《用器画法平面几何之部》、《用器画法立体几何之部》 |
4.3.4 个案教科书内容设置比较分析 |
4.3.5 个案教科书作图题比较分析 |
4.3.6 个案教科书名词术语比较分析 |
4.4 小结 |
第5章 民国后期(1936-1949)中学几何作图教科书 |
5.1 教育制度 |
5.1.1 背景 |
5.1.2 课程标准中对作图的要求 |
5.2 教科书审定及编写概况 |
5.3 个案分析 |
5.3.1 朱铣、徐刚编《平面几何画法》、《立体投影画法》、《简易透视画法》 |
5.3.2 王品端编《平面几何画法》、《投影画法》 |
5.3.3 个案教科书内容设置比较分析 |
5.3.4 个案教科书作图题比较分析 |
5.3.5 个案教科书名词术语比较分析 |
5.4 小结 |
第6章 1902-1949年中国中学几何教科书中的作图 |
6.1 初中几何教科书中的作图 |
6.1.1 清末时期以《普通教育几何教科书·平面之部》为例 |
6.1.2 民国初期以《共和国教科书·平面几何》为例 |
6.1.3 民国中期以《现代初中教科书》为例 |
6.1.4 民国后期以《实验几何学》为例 |
6.2 高中几何教科书中的作图 |
6.2.1 清末时期以《最新中学教科书几何学·立体部》为例 |
6.2.2 民国初期以《共和国教科书·立体几何》为例 |
6.2.3 民国中期以《新中学教科书高级几何学》为例 |
6.2.4 民国后期以《复兴高级中学教科书立体几何学》为例 |
6.3 几何作图研究 |
6.3.1 期刊论文中的几何作图研究 |
6.3.2 着名数学教育家几何作图思想—以傅种孙为例 |
6.4 小结 |
第7章 结论 |
7.1 1902-1949年中国中学几何作图教科书发展特点 |
7.1.1 宏观特点 |
7.1.2 微观特点 |
7.2 影响几何作图教科书发展的因素 |
7.2.1 政治、经济、文化的影响 |
7.2.2 教育制度、课程标准、教科书审定制度的影响 |
7.2.3 教科书编撰者群体的影响 |
7.3 启示与借鉴 |
7.4 进一步研究的问题 |
参考文献 |
附录1 个案几何作图教科书目次 |
附录2 个案中学几何教科书目次 |
致谢 |
攻读博士学位期间发表的学术论文目录 |
(8)中学数学思想的培养研究 ——基于深度教学的视角(论文提纲范文)
摘要 |
Abstract |
导论 |
第一节 问题的提出 |
一、数学育人价值实现与当前课堂教学实施的矛盾 |
二、数学学科思想教学与当前教学变革的错位 |
三、学生深度学习达成与课堂教学效果的偏离 |
第二节 研究意义 |
第三节 国内外研究综述 |
一、国内研究综述 |
(一) 关于数学课程的研究 |
(二) 关于数学知识及其教学的研究 |
(三) 关于学科思想方法的研究 |
(四) 关于数学思想的研究 |
二、国外文献综述 |
第四节 研究方法 |
第五节 研究内容 |
第一章 数学思想:内涵与意义 |
第一节 数学思想的发展回溯 |
一、数学思想的发展历史及阶段 |
二、我国数学思想在教学中的发展 |
第二节 数学思想的含义 |
第三节 数学思想的特征分析 |
一、内隐性 |
二、连续性 |
三、可迁移性 |
第四节 数学思想的价值分析 |
一、数学思想的教学价值 |
二、数学思想的发展价值 |
三、数学思想的应用价值 |
第二章 中学主要数学思想及相关概念辨析 |
第一节 数学发展史上的主要数学思想 |
第二节 中学数学教学中的数学思想 |
一、数形结合思想 |
二、分类讨论思想 |
三、转化或化归思想 |
四、类比或递推思想 |
五、构造或建模思想 |
第三节 相关概念辨析 |
一、数学知识与数学思想 |
二、数学能力与数学思想 |
三、数学方法与数学思想 |
四、数学素养与数学思想 |
第三章 当前中学数学思想教学现状分析 |
第一节 中学数学思想教学现状调查的描述分析 |
一、中学数学教师思想教学的基本情况 |
二、中学教师数学思想教学现状 |
第二节 中学教师数学思想教学的影响因素分析 |
一、教师自身对于数学思想的认知 |
二、学生数学学习的阶段性与连续性 |
三、教材与学生发展之间的关联性 |
四、教学活动组织的适切性 |
第三节 问题与讨论 |
第四章 基于深度教学的中学生数学思想建立过程 |
第一节 中学生数学思想的形成过程 |
一、以观察能力为基础 |
二、以猜想能力为辅助 |
三、论证思维的建立 |
第二节 深度学习以培养学生的数学思想 |
一、深度学习之内涵 |
二、深度学习与数学思想的建立 |
三、深度学习以培养学生的数学思想 |
第三节 深度教学以促进数学思想的培养 |
一、深度教学之意涵 |
二、深度教学与数学思想的建立 |
三、深度教学以促进数学思想的培养 |
第五章 中学数学思想及其培养策略 |
第一节 学科思想的特性与数学思想的价值 |
一、学科思想的普遍性与特殊性 |
二、数学思想的学科意蕴 |
第二节 中学主要数学思想的形成过程 |
一、中学数学思想培养所必备的学习经历 |
二、中学数学思想培养的教学过程 |
三、中学主要数学思想的培养 |
第三节 中学主要数学思想的培养策略 |
一、分类讨论思想的培养策略 |
二、数形结合思想的培养策略 |
三、转化或化归思想的培养策略 |
四、递推或类比思想的培养策略 |
五、构造或建模思想的培养策略 |
结语 |
参考文献 |
附录 |
致谢 |
(10)数形结合思想对幼师生数学素养的提升研究(论文提纲范文)
摘要 |
abstract |
第1章 引言 |
1.1 选题的背景 |
1.2 研究的问题 |
1.3 研究的目的和意义 |
第2章 主要概念界定 |
2.1 数形结合思想方法 |
2.2 数学素养 |
2.3 幼师生 |
2.4 幼儿园数学教学分析研究 |
2.4.1 幼儿园数学教学的目标 |
2.4.2 幼儿园数学教学的内容 |
2.4.3 幼儿学习数学知识的心理特点 |
第3章 数形结合思想在幼儿数学教育中的作用 |
3.1 有助于培养幼儿对数学的兴趣和探究欲 |
3.2 有助于发展幼儿初步的逻辑思维能力和解决问题的能力 |
3.3 有助于促进幼儿对初浅数学知识和概念的理解 |
第4章 幼师生数学学习现状及对数形结合思想认知的调查 |
4.1 调查目的 |
4.2 调查对象 |
4.3 调查方法 |
4.3.1 问卷调查(定量分析) |
4.3.2 访谈法 |
4.4 统计工具 |
4.5 实施过程 |
4.6 调查情况 |
4.6.1 问卷调查情况 |
4.6.2 访谈情况 |
第5章 调查结果分析及研究总结 |
5.1 调查结果分析 |
5.2 研究总结 |
第6章 下一步研究的方向 |
参考文献 |
攻读学位期间的研究成果及所获荣誉 |
致谢 |
四、江西籍现代数学家的若干特点(论文参考文献)
- [1]HPM视角下小学分数教学史料探微[D]. 卓小仃. 闽南师范大学, 2021
- [2]数理逻辑在中国的发展史研究(1920-1966)[D]. 苏日娜. 内蒙古师范大学, 2020(08)
- [3]张奠宙数学教学思想研究[D]. 杏永辉. 江苏大学, 2020(05)
- [4]民国前期数学现代转型的文化观照(1912-1935年)[D]. 宋晋凯. 山西大学, 2020(12)
- [5]中国基础教育阶段女性数学教育发展研究(1978-2020年)[D]. 冯俊琪. 内蒙古师范大学, 2020(08)
- [6]民国时期数学科普着作之研究[D]. 于金霞. 内蒙古师范大学, 2020(07)
- [7]中国中学几何作图教科书发展史(1902-1949)[D]. 张彩云. 内蒙古师范大学, 2019(07)
- [8]中学数学思想的培养研究 ——基于深度教学的视角[D]. 张先波. 华中师范大学, 2019(01)
- [9]以史为题,让试卷更有文化味[J]. 桂文通,吴治胜. 中学数学杂志, 2018(04)
- [10]数形结合思想对幼师生数学素养的提升研究[D]. 白黎. 江西科技师范大学, 2018(02)